

Coarse-to-Fine Sparse Sequential Recommendation

Jiacheng Li¹, Tong Zhao², Jin Li², Jim Chan², Christos Faloutsos² George Karypis², Soo-Min Pantel², Julian McAuley² j9li@eng.ucsd.edu,{zhaoton,jincli,jamchan,faloutso,gkarypis,pantel,jumcaule}@amazon.com ¹University of California, San Diego²Amazon, United States

SIGIR 2022

2022. 4. 12 • ChongQing

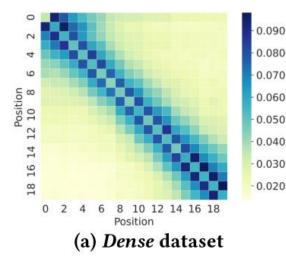


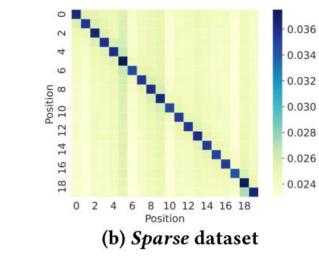
Leibniz-Institut

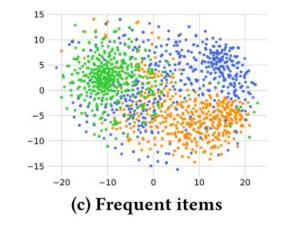
Reported by Gu Tang

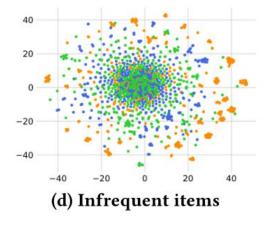
Introduction

Figure 1: Illustration of a coarse-grained sequence (intents) and a fine-grained sequence (items).









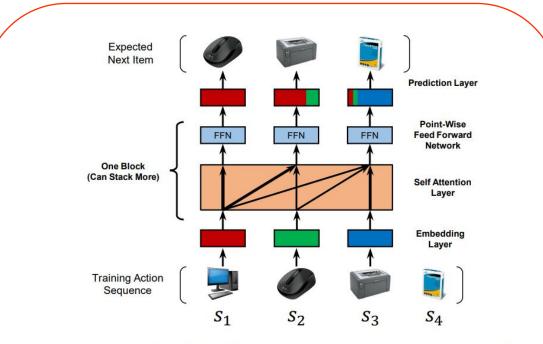


Figure 1: A simplified diagram showing the training process of SASRec. At each time step, the model considers all previous items, and uses attention to 'focus on' items relevant to the next action. 激活 Windows

Base model

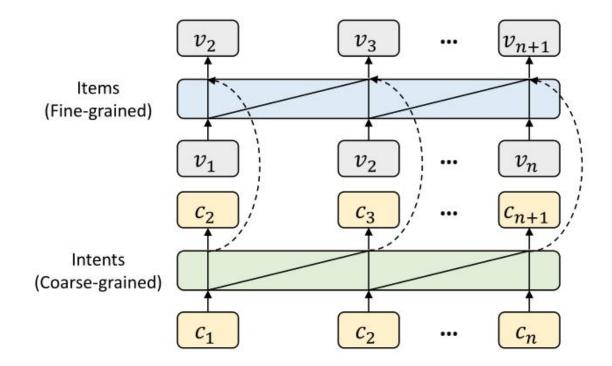


Figure 3: Framework illustration of CAFE.

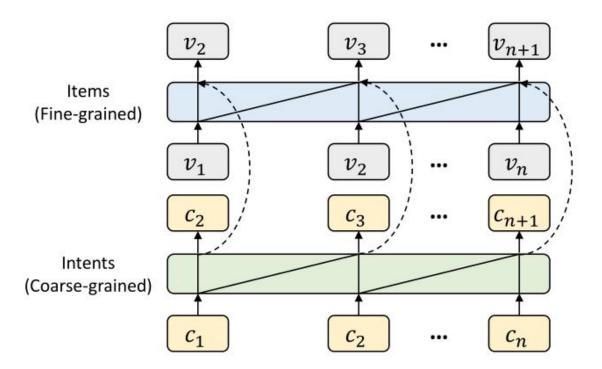


Figure 3: Framework illustration of CAFE.

2.2.1 Embedding. For an item set \mathcal{V} , an embedding table $\mathbf{E} \in \mathbb{R}^{d \times |\mathcal{V}|}$ is used for all items, whose element $\mathbf{e}_i \in \mathbb{R}^d$ denote the embedding for item v_i and d is the latent dimensionality. To be aware of item positions, SASRec maintains a learnable position embedding $\mathbf{P} \in \mathbb{R}^{d \times n}$, where n is the maximum sequence length. All interaction sequences are padded to n with a special 'padding' item. Hence, given a padded item sequence $S^v = \{v_1, v_2, \ldots, v_n\}$, the input embedding is computed as:

$$\mathbf{M}^{\upsilon} = \text{Embedding}(S^{\upsilon}) = [\mathbf{e}_1 + \mathbf{p}_1, \mathbf{e}_2 + \mathbf{p}_2, \dots, \mathbf{e}_n + \mathbf{p}_n] \quad (1)$$

2.2.2 *Transformer Encoder.* The Transformer encoder adopts scaled dot-product attention [21] denoted as f_{att} . Given $H_i^l \in \mathbb{R}^d$ is an embedding for v_i after the l^{th} self-attention layer and $H_i^0 = \mathbf{e}_i + \mathbf{p}_i$, the output from multi-head (#head=M) self-attention is calculated as:

$$\mathbf{O}_i = \operatorname{Concat}[\mathbf{O}_i^{(1)}, \dots, \mathbf{O}_i^{(m)}, \dots, \mathbf{O}_i^{(M)}] \mathbf{W}_O, \qquad (2)$$

$$\mathbf{O}_{i}^{(m)} = \sum_{j=1}^{n} f_{\text{att}}(\mathbf{H}_{i}^{l}\mathbf{W}_{Q}^{(m)}, \mathbf{H}_{j}^{l}\mathbf{W}_{K}^{(m)}) \cdot \mathbf{H}_{j}^{l}\mathbf{W}_{V}^{(m)},$$
(3)

where $\mathbf{W}_Q^{(m)}, \mathbf{W}_K^{(m)}, \mathbf{W}_V^{(m)} \in \mathbb{R}^{d \times d/M}$ are the *m*-th learnable projection matrices; $\mathbf{W}_O \in \mathbb{R}^{d \times d}$ is a learnable matrix to get the output \mathbf{O}_i from concatenated heads. Our backbone SASRec model is a directional self-attention model implemented by forbidding attention weights between v_i and v_j (j > i).

L

$$\mathbf{M}^{v} = \text{Embedding}^{v}(S_{u}^{v}); \mathbf{M}^{c} = \text{Embedding}^{c}(S_{u}^{c}), \qquad (4)$$

$$f_{\text{att}}(\mathbf{Q}_i, \mathbf{K}_j) = \frac{\exp(w_{ij}) \cdot \theta_{ij}}{\sum_{k=1}^{n} \exp(w_{ik}) \cdot \theta_{ik}}, w_{ij} = \frac{\mathbf{Q}_i \mathbf{K}_j^T}{\sqrt{d}}$$
(5)

$$\ln\theta_{ij} = (\mathbf{H}_i^l \mathbf{W}_Q^{(m)} + \mathbf{H}_j^l \mathbf{W}_K^{(m)} + \mathbf{d}_{ij}) \mathbf{W}_L^{(m)} + \mathbf{b}_L$$
(6)

$$\mathbf{R} = \mathbf{R}^{\upsilon} + \mathbf{R}^{c} \tag{7}$$

$$r_{j,t}^{c} = \mathbf{R}_{t}^{c} \mathbf{E}_{j}^{cT}, r_{k,t}^{v} = \mathbf{R}_{t} \mathbf{E}_{k}^{vT}$$

$$\tag{8}$$

$$= \mathcal{L}_{c} + \mathcal{L}_{v}$$

$$= -\sum_{S_{u} \in S} \sum_{1 \leq t \leq n} \left[\log(\sigma(r_{y^{c},t}^{c})) + \sum_{c_{j} \notin S_{u}} \log(1 - \sigma(r_{c_{j},t}^{c})) \right] \qquad (9)$$

$$-\sum_{S_{u} \in S} \sum_{1 \leq t \leq n} \left[\log(\sigma(r_{y^{v},t}^{v})) + \sum_{v_{k} \notin S_{u}} \log(1 - \sigma(r_{v_{k},t}^{v})) \right]$$

$$P(c_j, v_k | S_u^c, S_u^v, \Theta) = P(c_j | S_u^c, \Theta) P(v_k | c_j, S_u^c, S_u^v, \Theta)$$

= $\sigma(r_{j,t}^c) \sigma(r_{k,t}^v)$ (10)

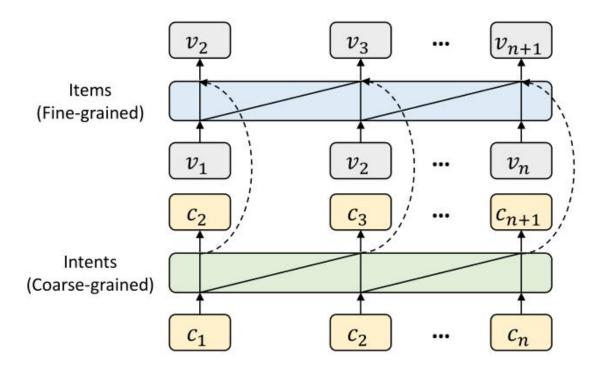


Figure 3: Framework illustration of CAFE.

where $\mathbf{W}_{L}^{(m)} \in \mathbb{R}^{d/M \times 1}$, $\mathbf{b}_{L} \in \mathbb{R}^{1}$, distance embedding $\mathbf{d}_{ij} \in \mathbb{R}^{d/M}$ is the (n+i-j)-th vector from distance embedding table $\mathbf{D} \in \mathbb{R}^{d \times 2n}$

Table 1: Data statistics.

Datasets	#Interaction	#Item	#Intent	#Sequence	Ave. Length	Density	
Amazon	5,370,171	1,910,226	1,392	131,248	40.9	2e-5	
Tmall	14,460,516	1,788,758	9,999	131,086	110.3	6e-5	

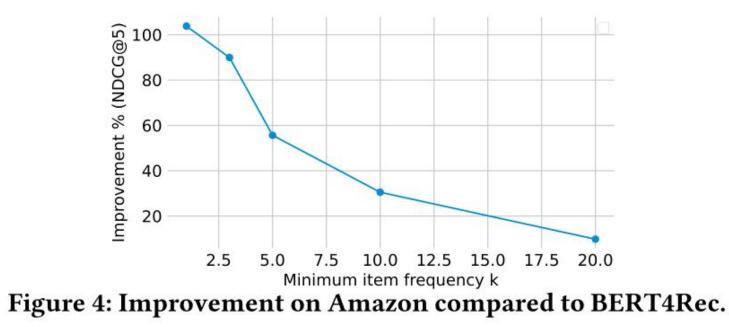
Dataset	Metric	Item-only Methods				Intent-aware Methods					Improvement	
		PopRec	SASRec	BERT4Rec	SSE-PT	LOCKER	NOVA	FDSA	BERT-F	LOCKER-F	CaFe	mprovement
-	NDCG@5	0.0286	0.1418	0.1830	0.2108	0.2170	0.0281	0.0670	0.2199	0.2436	0.3733	+53.24%
Amazon	HR@5	0.0487	0.1844	0.2240	0.2501	0.2597	0.0475	0.1089	0.2676	0.2947	0.4813	+63.32%
	MRR	0.0485	0.1522	0.1956	0.2239	0.2297	0.0477	0.0857	0.2329	0.2529	0.3656	+44.56%
Tmall	NDCG@5	0.0360	0.0741	0.2753	0.2106	0.2961	0.0501	0.1083	0.2998	0.3182	0.4290	+34.82%
	HR@5	0.0596	0.1205	0.3673	0.2977	0.3872	0.0812	0.1685	0.3917	0.4098	0.5152	+25.72%
	MRR	0.0577	0.0948	0.2782	0.2173	0.2979	0.0716	0.1265	0.3014	0.3189	0.4268	+33.84%

Table 2: Model comparision. The best results are bold and the best baselines are underlined.

Experiment

	Backbone (SASRec)	+(1) (FDSA)	+(1)(2)	+(1)(2)(3)	+(1)(2)(4)	+(1)(2)(3)(4) (CAFE)
NDCG@5	0.0741	0.1083	0.3045	0.3159	0.4254	0.4290
HR@5	0.1205	0.1685	0.3938	0.4066	0.5117	0.5152
MRR	0.0948	0.1265	0.3069	0.3172	0.4239	0.4268

Table 3: Ablation study on Tmall dataset. (1) fusing intents into item embeddings; (2) modeling intents explicitly; (3) local self-attention of item encoder; (4) inference with joint probability distribution of items and corresponding intents.



Thanks